T. Tanimori on behalf of SMILE-Project,
Cosmic-ray group, Physics Division, Kyoto University, Japan

9/Mar./2018 @ 高宇連（首都大学）
How to reach sub-m Crab

S: signal EA: 検出面積
BG: 雑音 θ: PSF

Significance \(\propto \frac{EA \cdot S}{\sqrt{EA \cdot (S + BG \cdot \theta^2)}} \)

BG dominated

2. Significance \(\propto \frac{EA \cdot S}{\theta \sqrt{(EA \cdot BG)}} \)

- 有効面積 several 100 cm²:
 Gas (3atm CF₄) or Silicon Detector in 1m³
- 最低限の雑音 ⇒ 宇宙背景 MeV ガンマ線 BG

⇒ これらの条件から1mCrabを達成するには
 PSF \(\theta = 1\sim2° \)
完全なイメージング分光観測が絶対必要！
従来型ガンマカメラとETCCのイメージング分光の差

各点の本来のスペクトル

CC視野内

CCで得られる各点のスペクトル

ETCCで得られる各点のスペクトル

従来カメラ 空測定できない

Sky Shine

ETCC: 空OK
GRB 検出と雑音除去

非撮像検出器の例

GRB100826Aの光度曲線
(GAP, Yonetoku+11)

\[(3.0 \pm 0.3) \times 10^{-4} \text{ erg cm}^{-2}\]

\(~1\text{GRBs/year}\)

Figure 10: Image and lightcurve of GRB 160530A detected with COSI.

1.3x10^{-4} \text{ erg/cm}^2 \sim 1\text{GRBs/year}

COSI effective area \sim 10\text{cm}^2

COMPTEL \sim 15-30\text{cm}^2 \geq 1\text{MeV}

30\text{GRBs} in 9\text{years} with 1\text{sr}

3\text{GRBs}/(1\text{sr} \cdot \text{year}) \geq 0.4 \times 10^{-5} \text{cm}^{-2}

COSIの結果と矛盾はない。

因みにBARREL balloon exp, NaIブロック

16\text{cm}^2 \Rightarrow 9\text{GRBSs /two months}

Compton Camera Imaging分光ができないため視野全体の雑音が入ってしまう。Non-imagingと感度があまり変わらない。真のイメージング分光が必要
Sub-MeV gamma-ray Imaging

Loaded-on-ballooon Experiment (SMILE-Project)

核ガンマ線イメージング法の確立（PSFの定義可能）
世界高性能の衛星観測へ！（4桁の感度向上）

SMILE-I 2006年気球実験
SMILE-II 2010~16
SMILE-II+ 18豪州気球実験予定

Effective area [cm²]

1cm²

200cm²

Energy [keV]

10⁻³

10⁻¹

10²

10³

Gamma ray

SMILE-I

SMILE-II

SMILE-II+

2"x2" Ge

improved ETCC with 3atm CF₄

improved ETCC with 2atm Ar

0.01cm²

SMILE-III

Satellite-ETCC

ETCC imaging (662keV)

ETCC imaging

SPD

ARM

PSF ~ 10°

PSF ~ 40°

Load-on-balloon Experiment (SMILE-Project)

SMILE

SMILE-III

SMILE-II

SMILE-II+

ETCC

Gas Vessel

TPC

MCPD

PSAs

Thin film

Gas Volume

Scattered γ

Pixel Scintillators

position & energy

3D-track & energy

SMILE-III

SMILE-II

SMILE-II+

SMILE-II+ 18豪州気球実験予定
Expected Sensitivity based on well-defined PSF

Sensitivities are calculated from effective area and PSF.

ETCC-Satellite 50cm-cubic ETCC (CF\textsubscript{4} 3atm) with >5RL Scinti. \times 4 modules
Effective Area \sim 200\text{cm}^{2}@1\text{MeV} and PSF:HPR-2\degree

For Continuum γ (10^6 sec)

For line γ, Sensitivity one order better than Continuum
Scattering-angle ϕ dependence of ARM & SPD

SPD weighted PSF for Point Source
PSFの最適化と他の提案との比較

eAstrogam (Si+CsI)

GRISP (Si+LaBr3)

AMEGO (Si+CsI)

ETCC-Sat. (CF4 gas + LaBr3)

ARM 1.5° @1MeV

ARM LaBr3 5%@662keV pixel 3mm
Expected Spectrum for 60Mpc SN-Ia by ETCC-satellite

60Mpc SN gamma spectrum (3x 5sigma lines) 30SNe/year

Preliminary

Effec. Area ~200cm²
ARM 1.5° @1MeV
ETCC sensitivity for NN

GRB 170817A fluence $1.4 \times 10^{-7} \text{erg cm}^{-2}$

43 Mpc

⇒ ETCC for SGRBs

$2.6 \times 10^{-8} \text{erg/cm}^2/\text{s}$, $\sim 0.9^\circ$

+ X-ray Telescope $\rightarrow <0.1^\circ$

BATSE flux limit

$\sim 1 \times 10^{-6} \text{erg/cm}^2/\text{s}$

(Yonetoku et al. 2014)

ETCC 10 times better

Brightness function $\propto L^{-1}$

Sensitivity $\times 10$ \Rightarrow # Det. $\times 10$

Fermi/GBM $\sim 120 \text{cm}^2$ 400 γs BG 1500γs

ETCC (epsilon type) $\sim 100 \text{cm}^2$

Signal 350γs, GB 0.5γ in PSF (2$^\circ$)

Spectrum analysis possible

Position detection of NN

30γs $<0.3^\circ$ \Rightarrow 120 Mpc NN まで可能！

Advanced Ligo NN up to 75 Mpc
2. Next plan, SMILE-III Long-duration flight
 Polar region 14-50 days ($T_{\text{obs}} > 10^6$ sec)

3. Small satellite (e.g., Ipsilon rocket)
 Detector weight 200Kg, 100-4MeV PSF ~2° @1MeV
 sub-MeV gamma, 2-3 globes at 0.3° below position determined.
 Field of view 4 str above
 Effective area 50-100cm²
 Sensitivity ETCC-Satellite’s 2/3 of 1
 0.7mCrab @1MeV in 10⁷ sec (one year)
 GRB is ~5 GRBs ($z > 10$)

Graph:
- GRB detection expected number/year
- Medium satellite sensitivity
- Balloon SMILE-III
- Satellite MDP ~10%
- Balloon MDP ~25%

Diagram:
- 35cm TPC (CF4 3atm) x2
- CdTe (1RL)
- GSO (3RL)
小型衛星ETCC案

50cm角TPC + Scinti (Bottom & side)

底面 40 mm, 側面 10 mm

シンチ重量：134.2 kg

Compton Event
Single Hit
Double Hit
Multi Compton
Pair Production

有効面積 120cm² @500keV
50cm²@1MeV

感度 中型衛星ETCCの半分
2mCrab @1MeV (10⁶sec)
SMILE-II+ 4月放球（アリススプリング）

SMILE-II+

ETCC

Battery telemetry

Drift Cage
Top side µPIC
Side PSAs

3月4日 高田君+5名 アリススプリング到着
4月上旬～ 放球
Targets in Alice Spring

1. Main target; 511keV gammas from Galactic Center for the certification of imaging spectroscopy of ETCC

- SMILE-2+
 - BG subtraction in Imaging Spec.
 - Eff.Area: ~4 cm²
 - PSF: ~10°
 - Obs. time: 1 day

2. Crab as an estimation of PSF, Obs.time ~7hr >6σ
Summary

◆ ETCC 技術でコンプトン領域（50kev－30MeV）で初めてイメージング分光技術を確立した。

◆ COMPTEL等、従来コンプトンカメラでとは全く異なる。

◆ X線でいれば Einstein(集光) ＋ ASKA （分光）が1度に実現

◆ 他波長同様、PSFを用いて設計予想が可能になった。

◆ 来月 豪州でSMILE-II+ 銀河中心観測を実施。

◆ JAXA小型衛星でもMeVガンマ線天文学、GRB天文学を画期的に進展できる⇒ サブmCrab、>4str の観測

 SNe(>50Mpc, 20SNe/year), GRB(z>10, 数個/year),

 very long GRB (Pop-III),

 NN重力波天体、kilonova 10個/year?

SN NN merger のイメージング分光で元素合成を解明する。